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Magnetic Correlations on Fractals 

A m n o n  Aharony,  1 Yuval Gefen, 2 and Yacov Kantor 3 

The critical behavior of magnetic spin models on various fractal structures is 
reviewed, with emphasis on branching and nonbranching Koch curves and 
Sierpifiski gaskets and carpets. The spin correlation function is shown to have 
unusual exponential decays, e.g., of the form exp[-(r/~)x], and to crossover to 
other forms at larger distances r. The various fractals are related to existing 
models for the backbone of the infinite incipient cluster at the percolation 
threshold, and conclusions are drawn regarding the behavior of spin correlations 
on these models. 
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1. INTRODUCTION 

There are two main motivations to study spin models on fractal structures. 
First, fractals are fully, explicitly described geometric shapes, which one may 
consider as "hybrids" between standard (integer dimensionality) shapes, such 
as hypercubic lattices. A study of spin models on these shapes may thus shed 
light on the dependence of critical phenomena on the dimensionality, and 
identify additional geometrical parameters on which the universal properties 
of these phenomena may depend/1) Secondly, as emphasized in these 
proceedings, many real physical structures exhibit self-similar (fractal) 
properties. In particular, we consider here the infinite incipient cluster at the 
percolation threshold.~2'3) Various geometrical models have been proposed in 
recent years to imitate this cluster, and it is of great interest to understand 
the effects of these different geometries on the magnetic properties of dilute 
magnets at the percolation threshold. Two extreme models have been 
proposed, i.e., the family of Sierpifiski gaskets (4) and the "links and nodes" 
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model. (5) In some respects, the two are combined in the "links and blobs" 
model. (6-8) In the present paper we review the critical properties of magnetic 
spin models on these various geometries. In Section 2 we review a series of 
renormalization group calculations on various fractals. (9-12) Models for the 
infinite incipient cluster at the percolation threshold are reviewed in 
Section 3, where consequences for the spin correlations on these models are 
also drawn. 

2. SPIN MODELS ON FRACTALS 

2.1. Nonbranching Ouasilinear Koch Curves 

An example of a nonbranching quasilinear Koch curve is shown in 
Fig. la. At each iteration of the construction, a segment is divided into three 
smaller segments, and the one in the middle is replaced by two new 
segments. Thus, the number of new segments is N =  4, the length scale 
changes by a factor b = 3, and the fractal dimensionality D, defined by 
b ~ = N, is 

D = in N/In b = In 4/ln 3 ~- 1.262 (1) 

The procedure is repeated many times, until the length of the basic 
segment becomes equal to some microscopic length (to be used as our unit of 
length). At this stage one places magnetic spins on the vertices, and one 
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Fig. 1. Two examples of Koch curves: (a) nonbranching, (b) branching. 
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introduces an exchange interaction between nearest neighbor spins. For the 
Ising model, the Hamittonian is 

= - J ~  SiSi+ 1 (2) 
i 

where S i = •  and where the index i counts the spins on the smallest 
microscopic scale. 

We now perform a renormalization group (RG) transformation, by 
tracing over the "internal" spins on the smallest scale. In Fig. la, this implies 
tracing over the spins S 2, $3, $4, $6, $7, $8, etc. For this example, 

Tr exp[K(S1S 2 -~ S 2 S  3 ~- S 3 S  4 -~- $4S5)  ] (3) 
$2,$3,$4 

4 
= Tr(cosh K) 4 ~[ (1 + SiSi+ 1 tanh K) = 8(cosh K)4[1 + S 1Ss(tanh K) ' ]  

i=1 

where K=J/knT ,  T being the temperature. This may be written 
exp(K:S1S 5 + C), with t anhK '  = (tanhK) 4. For the general nonbranching 
Koch curve, the result is 

tanh K '  = (tanh K) N (4) 

or l n t a n h K ' = N l n t a n h K = b  Dln tanhK.  Comparing this with the 
recursion relation for the correlation length, 

~' = ~/b (5) 
we thus identify 

= ]In (tanh K)[ 1/D ~ (2e-ZX)-~/D (6) 

Note that [ lntanhKI - ~ 1 - 2 K  - ~ e  is the correlation length for the one- 
dimensional Ising model. 

If we repeat the transformation (4) I times, until the distance between 
the end points of the segment becomes r = b t, then we find the spin-spin 
correlation function, 

(SoSr) = tanh L(I) = (tanh K)N'= (tanh K ) :  (7) 

which may also be written 

<s0 s t }  = exp [ - ( r /~ )  ~ ] (8) 

If the distance was measured along the curved quasi-one-dimensional line, 
then Eq. (8) would simply reflect the usual exponential decay of Ising 
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correlations in one dimension, exp(-rl/~i),  with r r = r D, ~i = I ln( tanh K)[ -1 
However, if experiments are done in the actual Euclidean d-dimensional 
space, in which the curve is embedded, then the correlation function is not 
simple exponential. In particular, the structure factor, S(q), which is the 
Fourier transform of Eq. (8), is not a Lorentzian. For example, the Fourier 
transform of (8) with D = 2 behaves as ~aexp[-(q~/2)z], and that with 
D = 1 as ~d/[1 + (q~)2](d+a)/z. 

The same general result applies for all discrete spin models. For 
example, one may consider the s-state Potts model, 

- J F  5sisi§ (9) 
i 

where S i = 1, 2,..., s, and find the recursion relation 

with 

X(K)'  = X(K) N (10) 

X(K) = (e K -  1)/(e K + s -  1) (11) 

These yield ~ =  Iln IX(K)I I -l/D, and everything else follows. One may also 
consider continuous spins. For the n-component model, 

J T ~ = - J ~  (Si. Si+a) (12) 
i 

where S i is a unit vector of general direction, the low-temperature recursion 
relation is 

yielding ~ ~: K alp. 

2.2. Branching Koch Curves 

An example is shown in Fig. lb. The relevant fractal dimensionality is 

D = in N/in b = In 6/ln 3 ~ 1.631 (14) 

Again, we trace over the internal spins, to find 

exp(K'S1S 6 + C) 

Tr  exp[K(S ,S  2 21- 8283 Av 8284 Av 8385 Av 8485 Av $ 5 S 6 ) ] ( 1 5 )  
s2s3s4s5 
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We first trace over S 3 and S 4, to find an effective coupling between S 2 and 
S s. It is easy to see that this effective coupling is of  the form 
exp(2KS2S 5 + C), with tanh/~  = (tanh K) 2. The trace over $2 and S 5 is now 
straightforward, and we find 

tanh K '  = (tanh K)  2 tanh 2/~ (16) 

For low temperatures, K >> 1, one has 

t a n h / (  ~ (1 - 2e -2e) ~_ (1 - 2e-2/;) 2 ~- 1 - 4e 2/; 

so that e -2g --~ 2e EK. Thus, tanh K '  --~ 1 -- 2e -2/;' --~ (1 -- 2e 2K)2 
(1 -- 8e-4/;), i.e., e 2K, _~ 2e-2/;  + O(e-4/;). Only the two "singly connected" 
bonds 1-2 and 5-6 contribute to e -2/;' at order e -2/;. The "doubly  
connected" bonds contribute only at order e -4K. The result may be easily 
generalized: 

e-2/ ; ,  ~ L l e  2/; + 0(8-4 / ; )  (17) 

where L 1 is the number of  singly connected bonds in the basic iterated 
structure. It is now easy to obtain ~l = [ln(tanh K) I -  ~/~1 _~ (2e-2/;)-~/x,,  with 

x I = In L1 / ln  b (18) 

(i.e., x~ = In 2/ln 3 ~- 0.631 in our example). 
As before, the correlation function becomes 

(So St )  m exp [ - ( r i l l )  xl ] (19) 

with corrections of  order e 4~. 

It is interesting to keep track of  the corrections of order e 4/;. In our 
example, tanh 2/s _~ 1 - 2e -4g _~ 1 -- 8e -4/; ~ (1 - 2e-4/;) 4 ~_ (tanh 2K) 4, 
with corrections of  order e -6/;. To this order, Eqs. (16) or (17) are 
generalized to 

tanh K '  = (tanh K) L' (tanh 2K) L2 + 0(e  6/;) (20) 

where L 2 is the number of  pairs of  "doubly connected" bonds, i.e., bonds 
such that the connection between the end spins (1 and 6 in Fig. lb)  is broken 
if the two bonds in a pair are broken (but not if one of  them is broken). 

We can thus define a new length, 

~2 = I ln( tanh 2K)l-l/x2 ~ (2e-4K) 1/x2 (21) 
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with 

x z = In L2/ln b (22) 

and the correlation function becomes 

[ _ ( r ~  x' O(e-6K)] 
(S~  [ \~1] --(-~2) x2q- (23) 

The correlations will be dominated by the "singly connected" bonds only if 
(r/~l) :~1 >> (r/~2) x2. Thus, if x 2 > x 1 then Eq. (19) applies only in the range 
r < e 2r/tx2-xl). For larger r, or for lower K (higher temperature), the second 
term in Eq. (23) wins. 

In the example of Fig. lb, x 2 = In  4/ln 3 = 2 x 1 ,  and the crossover 
discussed here is expected at r ~ e 2K/x' ~ ~1. It is easy to construct examples 
with Z 1 = 0 (i.e., X 1 = --oo), when the second term always wins, or ones with 
x 2 > x~, when Eq. (19) is always valid (as in the case for the nonbraching 
curves). One could also have L 1 = L 2 = 0, so that the correlations are deter- 
mined by higher-order terms. 

The same phenomena are predicted for all discrete models, e.g., the s- 
state Potts model. However, the situation changes for the continuous spin 
models: Here, Eq. (16) is replaced by 

(1 ---~-7-, ) -- (1 - - K ) Z  (1 -- 2~- )  + 0 ( ~ 2 )  (24) 

with (1 - a/K) = (1 - a/K) 2 + O(1/KZ). Thus, 1//s ~_ 2/1(, and the factor 
involving/s in Eq. (24) contributes to the leading order in 1/K (and not only 
to the next order, as in the discrete cases). In fact, it is easy to see that the 
(1/K)'s add like resistors (in series or in parallel), and that 

1/K' = R/K + O(1/K 2) (25) 

where R is the resistance of the basic iterated structure (equal to 3 for 
Fig. lb). Defining ~ oc K% we thus identify 

1/v = ~'= in R/ln b 

and 

(So" S~) ~- exp [-(r/~) ~] (26) 

for continuous spins. 
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2.3.  Sierpi6ski Gaskets 

Several iterations of the Sierpifiski gasket in two dimensions are shown 
in Fig. 2. The gasket is intermediate between the quasi-one-dimensional 
curves and those in higher dimensions, as it is finitely ramified but its 
minimum order of ramification is larger than 2. ~4'1~ In d dimensions, the 
fractal dimensionality of the gasket is 

D = ln(d + U/ln 2 (27) 

and its minimum order of ramification is .Rrnin = d + 1. 
As in the previous cases, we solve the Ising model on the gasket by 

tracing over the internal spins. For the two-dimensional example of Fig. 2, 
this amounts to tracing over three spins. The resulting recursion relation 
isO, lo) 

e 4K' = (e 8K - e 4t~ + 4)/(e 4K + 3) (28) 

and for small t = e  -4~: its solution is t ( l )=  [ 4 ( I o - I ) ] - I + 0 [ ( l o - l ) - 2 ] ,  
where 410= 1 / t (O)=e  4I~. Iterating until the effective correlation length 
becomes {(l) = ~/2 t = O(1), when we also expect that t(l) = O(1), i.e., l ~  I 0' 
we find 

oc exp [1 in 2 exp(4K)] (29) 

We solved various discrete spin models on gaskets at d =  2 and 
d = 3 ,  (1~ and always found expressions like (29), in which { is exponential 
in e aK (rather than a power of e 2K, as in the quasi-one-dimensional cases). 
Note that (in the spirit of Section 2.2) the gasket contains neither "singly 
connected" bonds, nor "doubly connected" bonds, etc. It represents the 
extreme case of loops within loops ad infinitum. 

The correlation function between two spins, at a distance r, which 
occupy the corners of a large triangle, may be estimated as tanh K(I), where 
r = 2  t. For r ~ ,  i.e., I ~ l  o, t a n h K ( l ) ~ l - 2 e - 2 I ~ l ) ~ l - ( l  o - l ) - ~ / 2 ~  
1 -- [ln({/r)/ln 2]-1/2 or 

(SoSr)  ~-- exp{--[ln Z/ln(G/r)] 1/2} (30) 

Again, this is a very unusual form. 

& &  
Fig. 2. The Sierpifiski gasket, d= 2. 
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The behavior of continuous spin models is again determined by that of 
a resistor network, and we find ~ ~ T-1/~, with~4,10) 

~'= ln[(d + 3)/(d + 1)]/ln 2 (31) 

2.4. Sierpifiski Carpets 

All the systems reviewed so far have a finite order of ramification, and 
thus end up having no phase transition at any finite temperature. We have 
also studied a series of many Sierpifiski carpets, (1'~'12) and found a finite 
transition temperature for the discrete spin models whenever the order of 
ramification was infinite. In order to characterize the geometry of the carpets 
one also needs the connectivity Q and the lacunarity L. (1'2'11'12) An approx- 
imate Migdal-Kadanoff RG scheme yields exponents which depend on all 
these geometrical factors (and not only on D). One must therefore generalize 
one's characterization of universality classes, to include D, Q, L, and 
probably other factors. Note that the critical properties of the branching 
Koch curves were also not solely characterized by D (and one needed to add 
the exponents x~, x 2, etc.). 

Addressing the question of the relation between fractals and the analytic 
continuation of hypercubic lattices we found that the exponents of the two 
become the same (at least in d = 1 + e dimensions) when the lacunarity of 
the fractals approaches zero, which is as close to being translationally 
invariant as possible. <12) 

Concluding this section, we may say that the general question of 
magnetic correlations on fractals has only begun to be studied, and many 
questions remain open for the future. 

3. MODELS FOR THE BACKBONE OF THE INFINITE CLUSTER 

The propagation of correlations (as well as the flow of a current) 
through the infinite cluster involves only its b a c k b o n e ,  and not the dangling 
("dead end") bonds. There exist many numerical and experimental studies 
which show that the backbone is self-similar, with the fractal dimensionality 

D ~  = d --  flB/vp (32) 

where P~ oc (p - pc) ~" is the probability to belong to the backbone, and ~p ~: 
( p - p c )  -vp is the pair connectedness length. (14'a5) Moreover, its order of 
ramification is finite, but it is not quasi-one-dimensional. (15) The Sierpifiski 
gaskets are the simplest nonrandom fractals which are compatible with these 
properties. Moreover, their fractal dimensionalities, Eq. (27), are very close 
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to those of the backbones, for 1 ~<d~<4. The gaskets were therefore 
proposed as models for the backbone. (4) 

An explicit calculation of the resistivity of the gaskets, related to 
Eq. (31), also gave reasonable estimates for the appropriate exponents. 
However, these estimates are very rough, and are excluded by recent 
accurate simulations. 

As mentioned above, the gaskets have the extreme property of not 
having any singly connected, doubly connected, etc., bonds. This led to the 
prediction (29), which seems to indicate too strong a divergence of 4. 

The other extreme model, by Skal and Shklovskii, (5) describes the 
backbone as a superlattice made by nodes separated by a distance of order 
~p, connected by curved quasi-one-dimensional links, built of L ~ ( p -  Pc) -  
bonds (Fig. 3a). On length scales r < ~p, the correlation between two spins is 
only via these quasi-one-dimensional links. On these length scales, all the 
"mass" of the backbone is on the links, hence L ~ ~ and ff = D B vp. 

Skal and Shklovskii assumed that the links are nonbranching. For 
r < ~p, this yields our Eqs. (6) and (8). However, there exist exact proofs (v'8) 
that at Pc one should have ~l ~: (e2~) vp, in contrast to Eq. (6) (since 
De 4: 1/vp). Moreover, Eqs. (6) and (13) predict the same exponents for 
discrete and continuous spin models, and this does not agree with 
experiments. ~s) 

The "links and nodes" model was therefore modified into the "links and 
blobs" one ~6-s) (Fig. lb). The "blobs" contain "multiply connected" bonds, 
and they are introduced in a self-similar way. ~s) Within this model, the 
correlation between two spins at distance r < ~p is still via a single link, but 
this link is now a branching curve. Therefore, our Section 2.2 may be used. 
As Coniglio ~7'8) noted, we now have at our disposal the three exponents D e, 
x I , and ~, and therefore we can fit the fractal dimensionality and the 
behavior of discrete and continuous spin models. 

(b} 
Fig. 3. Models for the backbone: (a) "links and nodes," (b) "links and blobs." 
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Combining Eq. (18) with Coniglio's result ~ ~ (e2r) "p we now identify 

xl  = 1/vp (33) 

Coniglio's proof may also be generalized ~'13) to yield x 2 = 2x 1. Thus, the 
links and blobs model predicts Eq.(23),  with a crossover from 
exp[--(r/~l) ~/vp] to exp[--(r/~2) 2/~p] .,~ exp[--(r/~l) 2/vp ] at r ~  e 2Kvp ~ ~1. For 
larger values of r it is reasonable to expect higher-order terms, e.g., (r i l l )  3/"p, 
to become equally important. These will probably cut the correlation 
function off rather quickly beyond r > ~ .  

So far we discussed only the magnetic correlation function between two 
spins on the infinite cluster, at Pc. In fact, the same correlation function is 
expected for any two spins which belong to the same percolating cluster. The 
probability that the two sites (at the origin and at a distance r) both belong 
to the cluster is given by the percolation correlation function, G(r). At Pc, 
this function has the form 

G(r) ~ 1/r d-E+np (34) 

Thus, we conclude that at Pc the average spin correlation function is 

[ ( S o a r )  ~ rd_2+--np exp -- (35) 

for r < ~1, with a faster decay for r > ~ .  
The situation is further complicated for p ~ Pc, when ~p is finite. We 

still expect Eq. (35) to hold for r < ~p. The function (35) will hold for all 
r < ~p if ~p < ~1. A modified behavior is expected for ~ < r < ~p if ~ < ~p. 
The line ~1 ~ p ,  or e 2 r ~  ( p - - p c )  -1, indeed represents a crossover, as 
predicted before. ~7,s) However, the behavior we expect on the two sides of 
this line has several new features. 

Experimentally, the spin correlation function is masured via its Fourier 
transform, the structure factor S(q). O7) It is far from trivial to perform such 
a transform on Eq. (35). In any case, it is clear that for q~l ~ 1 one may 
write 

S(q) oc [1 + C(q~l) 2 -I- O((q~)4)] -~ (36) 

while for q~l >> 1 one recovers the percolation result 

S(q) oc 1/q 2-"p (37) 

In general, S(q) is not a Lorentzian. A detailed discussion of S(q) will be 
given elsewhere, t13) 
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In conclusion,  we have shown that  the "l inks and b lobs"  model,  as any 
other model  based on self-similar branching Koch  curves, yields Eq. (35). It 

would be very interesting to test details  of  this correla t ion function, both 
numerical ly  and experimental ly.  I t  should be emphasized that  it is not  clear  
if this model  fully describes the backbone.  If, instead, there are loops within 
loops on all scales, as in the gaskets,  then the picture is dras t ica l ly  modified. 
The true description,  which is p robab ly  intermediate  between the two 
pictures,  remains  to be explored in the future. 
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